Hurricane Eyewall Evolution in a Forced Shallow-Water Model

نویسندگان

  • ERIC A. HENDRICKS
  • WAYNE H. SCHUBERT
  • YU-HAN CHEN
  • HUNG-CHI KUO
  • MELINDA S. PENG
چکیده

A forced shallow-water model is used to understand the role of diabatic and frictional effects in the generation, maintenance, and breakdown of the hurricane eyewall potential vorticity (PV) ring. Diabatic heating is parameterized as an annular mass sink of variable width and magnitude, and the nonlinear evolution of tropical storm–like vortices is examined under this forcing. Diabatic heating produces a strengthening and thinning PV ring in time due to the combined effects of the mass sink and radial PV advection by the induced divergent circulation. If the forcing makes the ring thin enough, then it can become dynamically unstable and break down into polygonal asymmetries or mesovortices. The onset of barotropic instability is marked by simultaneous drops in both the maximum instantaneous velocity and minimum pressure, consistent with unforced studies. However, in a sensitivity test where the heating is proportional to the relative vorticity, universal intensification occurs during barotropic instability, consistent with a recent observational study. Friction is shown to help stabilize the PV ring by reducing the eyewall PV and the unstable-mode barotropic growth rate. The radial location and structure of the heating is shown to be of critical importance for intensity variability. While it is well known that it is critical to heat in the inertially stable region inside the radius of maximum winds to spin up the hurricane vortex, these results demonstrate the additional importance of having the net heating as close as possible to the center of the storm, partially explaining why tropical cyclones with very small eyes can rapidly intensify to high peak intensities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Axisymmetric View of Concentric Eyewall Evolution in Hurricane

Multiplatform observations of Hurricane Rita (2005) were collected as part of the Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign during a concentric eyewall stage of the storm’s life cycle that occurred during 21–22 September. Satellite, aircraft, dropwindsonde, and Doppler radar data are used here to examine the symmetric evolution of the hurricane as it underwent e...

متن کامل

Some Aspects of Hurricane Inner-Core Dynamics and Energetics

The energy cycle of the mature hurricane resides in the secondary circulation that passes through the storm’s eyewall. By equating the generation of energy in this cycle to boundary layer dissipation, an upper bound on wind speed is derived. This bound depends on the degree of thermodynamic disequilibrium between the tropical ocean and atmosphere, on the difference between sea surface and outfl...

متن کامل

Observational tests of hurricane intensity estimations using GPS radio occultations

This study presents a novel approach to estimating the intensity of hurricanes using temperature profiles from Global Positioning System radio occultation (GPSRO) measurements. Previous research has shown that the temperature difference between the ocean surface and the eyewall outflow region defines hurricanes’ thermodynamic efficiency, which is directly proportional to the storm’s intensity. ...

متن کامل

Convective Structure of Hurricanes as Revealed by Lightning Locations

Cloud-to-ground lightning flash locations were examined for nine Atlantic basin hurricanes using data from the National Lightning Detection Network. A common radial distribution in ground flash density was evident: a weak maximum in the eyewall region, a clear minimum 80–100 km outside the eyewall, and a strong maximum in the vicinity of outer rainbands (210–290-km radius). These results are co...

متن کامل

Hurricane intensity and eyewall replacement.

Observations made during the historic 2005 hurricane season document a case of "eyewall replacement." Clouds outside the hurricane eyewall coalesce to form a new eyewall at a greater radius from the storm center, and the old eyewall dies. The winds in the new eyewall are initially weaker than those in the original eyewall, but as the new eyewall contracts, the storm reintensifies. Understanding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014